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Abstract 

Improving an enzyme’s (thermo-)stability or tolerance against solvents and detergents is highly 

relevant in protein engineering and biotechnology. Recent developments have tended towards data-

driven approaches, where available knowledge about the protein is used to identify substitution sites 

with high potential to yield protein variants with improved stability and, subsequently, substitutions 

are engineered by site directed or site saturation (SSM) mutagenesis. However, the development 

and validation of algorithms for data-driven approaches has been hampered by the lack of 

availability of large-scale data measured in a uniform way and being unbiased with respect to 

substitution types and locations. Here, we extend our knowledge on guidelines for protein 

engineering following a data-driven approach by scrutinizing the impact of substitution sites on 

thermostability or / and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large-

scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 

3439 possible single variants, which was evaluated as to thermostability and tolerances against four 

detergents under respectively uniform conditions. Our results provide systematic and unbiased 

reference data at unprecedented scale for a biotechnologically important protein, identify 

consistently defined hot spot types for evaluating the performance of data-driven protein 

engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint 

Network Analysis yields (CNA) hot spot predictions with an up to 9-fold gain in precision over 

random classification. 
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1. Introduction 

Improving a protein’s (thermo-)stability 1-8 or tolerance against solvents 9-16 and detergents 17-19 has 

become of utmost importance in protein engineering: Considering that enzymes are predominantly 

used as detergent additives 20 and that the global industrial enzyme market has been forecast to 

reach $7.0 billion by 2023 from $5.5 billion in 2018 makes clear that an increasing demand exists 

for enzymes that are adapted to harsh temperature, solvent, and detergent conditions 20-22. 

Modifying protein  stability based on rational approaches has a long history 23, 24 and a number of, 

usually, structure-based algorithms have been developed that estimate the effect of a substitution on 

the stability of a protein 25-28. However, despite successful applications in single cases (e.g., see 

Table II in ref. 20), the general reliability of these approaches is still unsatisfactory 25, 29-32. One 

reason is that multiple attempts to identify key features in protein sequences and/or structures 

associated with protein stability have failed to paint a clear picture, which makes it difficult to 

define rules of universal validity and general applicability 20, 33. Another reason lies in the data used 

in the design and evaluation of rational design algorithms. The ProTherm database 34, 35, which has 

been most frequently used for such endeavors, contains on average ~12 single, ~12 double, and ~1 

multiple substitution for each of the ~1000 proteins stored 33. Thus, while overall exhaustive, the 

data may not include a sufficient number of variants per protein to compensate for outliers and, 

therefore, may not allow a stratification of the data to derive a generally applicable set of rules. As 

such data, furthermore, originates from different experimental methods, it is not surprising that 

different changes in protein stability have been found associated with the same variant 36. In 

addition, the data is strongly biased towards substitutions to alanine, whereas it is very limited for 

some other substitutions 37. Recently, comprehensive mutagenesis data on a domain level associated 

with protein stabilities against a denaturating agent have been reported as a means to overcome 

these limitations 38. 

Following the principles of natural evolution, albeit on a reduced timescale, protein engineering by 

directed evolution has emerged as an attractive strategy to improve stability through iterative cycles 

of mutagenesis and screening or selection 20, 39. However, the highly labor-intensive method can 

become technically challenging if beneficial mutations need to be accumulated over generations of 

mutagenesis and screening or selection to reach a desired effect 40. After all, evolution is not good 

for problems that require multiple, simultaneous, low-probability events 41. To successfully 
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investigate the then necessary large protein libraries, powerful automated techniques for rapid high-

throughput screenings were established 20, 39. 

As an intermediate, third route recent developments have tended towards data-driven approaches 42, 

where available knowledge about the protein is used to, first, identify a substitution site with high 

potential to yield protein variants with improved stability and, second, substitutions are engineered 

by site directed (SDM) or site saturation (SSM) mutagenesis 33. The “knowledge” can arise from 

sequence information 42, 43, structure information 44-46 or computational techniques 2, 4, 7, 8, 47, 48. By 

such data-driven approaches, the challenge of accurately predicting the effect of a substitution on 

protein stability is circumvented, and substitution efforts are guided to a few, distinguished 

sequence positions, making subsequent combinations feasible. However, even with high-throughput 

screening techniques it is difficult to handle all variants based on combinations of the 20 

proteinogenic AAs at more than six substitution sites (i.e., more than 206 = 6.4 * 107 variants) 20, 39, 

49, 50. 

Here, to extend our knowledge on guidelines for time- and cost-efficient protein engineering 

following a data-driven approach, we scrutinize the impact of substitution sites on thermostability 

or / and detergent tolerance for one protein at very large-scale. To do so, we systematically analyze 

a complete experimental site saturation mutagenesis (SSM) library of BsLipA produced by us 15, 16, 

19, which contains all 3439 theoretically possible single variants (181 substitution sites of BsLipA x 

19 naturally occurring AAs) and was evaluated as to different protein stabilities under respectively 

uniform conditions. Previously, the SSM library has been characterized regarding solvent and 

detergent tolerance (D) data 15, 16, 19. Here, we characterize the SSM library for the first time 

regarding thermostability (T50) as well as combined T50 and D data. BsLipA is a particularly 

interesting protein for such analysis, because a high-resolution X-ray crystal structure (PDB ID: 

1ISP, 1.3 Å) is known 51, which provides valuable insights in atomic details. Furthermore, the 

protein has considerable biotechnological importance 52, 53, possesses an / -hydrolase fold 54 such 

that the impact of substitution sites at -helices, -strands, and other secondary structure elements 

can be tested, and has been used frequently as a model system in related experimental and 

computational small-scale studies 7, 8.  

Our systematic large-scale analysis focusses on the following five aspects: I) We determined the 

likelihoods to find substitution sites showing significantly increased T50 or D and investigated the 

frequencies and magnitudes of effects caused by single AA substitutions. II) We analyzed at which 

substitution sites variants result with increased T50 or / and D across the protein and compared the 
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findings to random mutagenesis. III) From these results, we defined hot spot classes, i.e. classes of 

substitution sites particularly promising to increase T50 or / and D. IV) We probed to what extent 

hot spots can be predicted based on structure or sequence characteristics. V) We tested the 

predictive power of the rigidity theory-based approach Constraint Network Analysis (CNA) 

previously applied in related scenarios 2, 4-8, i.e., how accurately hot spots can be predicted as 

structural weak spots identified in a thermal unfolding simulation of the protein. 

The main outcomes from our analyses are that we provide systematic and unbiased reference data at 

large scale for thermostability measured as T50 values and detergent tolerance measured as D for a 

biotechnologically important protein, we identify and consistently define hot spot types for 

evaluating the performance of data-driven protein engineering approaches, and we show that CNA-

based hot spot prediction can yield a gain in precision over random classification up to 9-fold. 
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2. Materials and Methods 

2.1. Generation and screening of the BsLipA SSM library towards changes in T50 or D 

The BsLipA library was constructed by site saturation mutagenesis (SSM) and site directed 

mutagenesis (SDM) as described by Frauenkron-Machedjou et al. 15, 16 and Fulton et al. 19. In the 

present study, we defined all 3439 single variants (181 substitution sites of BsLipA x 19 naturally 

occurring AAs) generated with SSM and SDM as “SSM library”.  

Previously, the SSM library has been screened towards its tolerance against four different classes of 

detergents: anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, 

CTAB), zwitterionic (3-[hexadecyl(dimethyl)azaniumyl]propane-1-sulfonate, SB3-16), and non-

ionic (Polyoxyethylenesorbitan monooleate, Tween 80) by Fulton et al. 19. Residual activities of the 

variants after incubation in the presence of the respective detergent (D) were obtained as described 

in ref. 19.  

As to the screening procedure regarding thermostability, the screening cultures were incubated as 

described in ref. 19. The culture supernatant was collected by centrifugation (1500 g, 40 min) and 

diluted 2.5-fold with Sørensen buffer (42.5 ml Na2HPO4 (8.9 g l-1), 2.5 ml KH2PO4 (6.8 g l-1)) 

before screening. The protein containing supernatant was incubated in a 0.2 ml PCR microtiter plate 

(MTP) in a programmable thermal cycler (Eppendorf Mastercycler Thermal Cycler PCR). The 

supernatant samples were incubated at temperatures between 40°C to 60°C for 20 min. A dry block 

incubator (MRK 23 Cooling-ThermoMixer, DITABIS) was equipped with a “15 ml and 50 ml 

falcon tube adaptor” (BT 03, DITABIS). Three falcon tubes with 19.8 ml of para nitrophenyl 

palmitate (pNPP) solution A (19.8 ml Sørensen buffer, 45.54 mg sodium deoxycholate, 22 mg gum 

arabic) were inserted into the falcon tube incubator. All dry block incubators were set to 40°C, 30 

min prior to the beginning of the experiment. 20 s before the end of the incubation, 2.2 ml of pNPP 

solution B (48 mg pNPP in 8 ml 2-propanol) was added into prewarmed pNPP solution A and 

briefly mixed. The substrate mixture was applied to the wells of the MTPs in 50 µl aliquots to start 

the measurement of thermostability and measured in a MTP reader (Molecular Devices 

Spectramax). The enzymatic activity in each sample was measured by the rate of increase in 

absorption at O.D.410 nm. The residual activity in each sample was calculated from the slope of the 

change in absorption at O.D.410 nm relative to the slope of the sample heated to 40°C during a 

measurement time of 3 min. From that, T50 was obtained from the inflection point of a sigmoid 

curve fit. Control experiments with just pNPP, or pNPP in the presence of BsLipA at temperatures 
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up to 60.6°C, that way leading to denaturation of BsLipA, show no change in the para 

nitrophenolate (pNP) absorption over time, demonstrating that pNP is only produced in the presence 

of a functional enzyme (Figure S1). The T50 values are provided as an Excel sheet in the Supporting 

Information. 

2.2. Global characterization of BsLipA variants’ changes in T50 or D 

For analyzing the changes in T50 (Eq. 1) or D (Eq. 2) of BsLipA variants, the values of wtBsLipA 

were used as references, i.e., the differences between the values of the variants and those of 

wtBsLipA were calculated. Positive (negative) -values indicate variants with increased (decreased) 

T50 or D. 

 Eq. 1

 Eq. 2

For the large-scale analysis, only T50 of variants higher (lower) than the experimental uncertainty, 

taken as the standard deviation T for the respective variant determined from three screenings of 

T50, were considered significantly increased (decreased) in T50 compared to wtBsLipA. 

Furthermore, only D of variants higher (lower) than two times the experimental standard deviation 

(2 D) of wtBsLipA determined from screenings of 2997 wtBsLipA replicates 19 towards the 

respective detergent were considered significantly increased (decreased) in D compared to 

wtBsLipA. Here, D of wtBsLipA was used as significance criterion, as the experimental standard 

deviation for each variant was not available. 2 D was chosen because it corresponds to a p-value 

below 0.05. 

 

2.3. Definitions of classes of BsLipA substitution sites 

The different classes of substitution sites regarding significantly increased T50 or / and D were 

defined based on the set theory. Therefore, the following binary operations on sets were applied: 

The union of the sets A and B is the set of elements which are in A, in B, or in both A and B (Eq. 3) 

55. 

 Eq. 3
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The intersection of the sets A and B is the set of elements which are in A and B (Eq. 4) 55. 

Finally, the Jaccard index (J) was used to compare the similarity of two sets A and B, i.e., the 

cardinal number of the respective intersection divided by the cardinal number of the respective 

union (Eq. 5) 56, 57. The range of J is [0, 1], with one indicating identical sets A and B. 

 Eq. 5

Based on the different classes of substitution sites, we defined hot spots, which are substitution sites 

particularly promising to yield significantly increased T50 or / and D. 

 

2.4. Structural determinants of BsLipA hot spots 

Hot spots were assigned to groups according to their location in secondary structure elements 

(yielding 20 subgroups), solvent accessible surface areas (SASAs) (yielding five subgroups), and 

physicochemical properties (yielding five subgroups). The secondary structure elements of the 

wtBsLipA crystal structure (PDB ID: 1ISP with highest resolution of 1.3 Å 51) were identified with 

the DSSP program 58. Additionally, the SASAs of the wtBsLipA were analyzed with the DSSP 

program 58. The fractional solvent accessible surface areas (fSASAs) were calculated with respect to 

the maximum solvent accessible surface area of each hot spot (maxSASA) (Eq. 6) 59. 

 Eq. 6

As the screening studies were performed at pH 8 19, hot spots were subgrouped by their 

physicochemical properties as follows: aliphatic (Ile, Ala, Val, Leu, Gly), aromatic (Phe, Tyr, Trp), 

neutral (Cys, Pro, Met, Ser, Thr, Asn, Gln), positively charged (His, Lys, Arg), and negatively 

charged (Asp, Glu). 

 

 Eq. 4
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2.5. Conservation of wtBsLipA residues within bacterial lipases 

Apart from the catalytic triad (S77, D133, and H156), also variants at conserved sequence positions 

were considered because the SSM library revealed significantly increased T50 or / and D at such 

positions. The conservation of wtBsLipA residues within the bacterial lipases was calculated using 

the available sequences from the Pfam database 60 for the lipase class 2 (PF01674). The sequences 

were limited to the bacterial sources, which contain 1138 sequences from 603 bacterial species. All 

sequences were aligned using Clustal Omega 61, 62. For the alignment, the full-length sequence of 

wtBsLipA (UniProt ID: P37957) was used 63. The conservation was calculated using AACon 

Calculations 64 through Jalview 65. The conservation range is [0, 10] with 0 (10) showing no (high) 

conservation. 

 

2.6. Constraint Network Analysis (CNA) 

The Constraint Network Analysis (CNA) aims at linking structural rigidity and flexibility to the 

biomolecule’s structure, (thermo)stability, and function 66-68. The CNA software acts as front- and 

back-end to the graph theory-based rigidity analysis software Floppy Inclusions and Rigid 

Substructure Topography (FIRST) 69. In CNA, proteins are modelled as constraint networks in a 

body-and-bar representation, which has been described in detail by Hesphenheide et al 70. Based on 

the modelled constraint network of the protein structure, a pebble game algorithm decomposes the 

network into flexible and rigid subparts 71, 72. In order to monitor the decay of network rigidity and 

to identify the rigidity percolation threshold, CNA performs thermal unfolding simulations by 

consecutively removing non-covalent constraints (hydrogen bonds, including salt bridges) from a 

network in increasing order of their strength 73. For this, a hydrogen bond energy EHB is computed 

by a modified version of the potential by Mayo et al. 73. During the thermal unfolding simulations, 

phase transitions can be identified where the network switches from overall rigid to flexible states. 

For a given network state  = f(T), hydrogen bonds with an energy EHB > Ecut( ) are removed from 

the network at temperature T. In this study, the thermal unfolding simulation was carried out by 

decreasing Ecut from -0.1 kcal mol 1 to -6.0 kcal mol 1 with a step size of 0.1 kcal mol 1. Ecut can be 

converted to a temperature T using the linear equation introduced by Radestock et al. (Eq. 7) 2, 4. 

The range of Ecut is equivalent to increasing the temperature from 302 K to 420 K with a step size of 

2 K. Because hydrophobic interactions remain constant or become even stronger as the temperature 
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increases 74, 75, the number of hydrophobic tethers was kept unchanged during the thermal unfolding 

simulation, as done previously 7, 8. 

 Eq. 7

The CNA software is available under academic licenses from http://cpclab.uni-

duesseldorf.de/software, and the CNA web server is accessible at http://cpclab.uni-

duesseldorf.de/cna/. 

 

2.7. Generation of a structural ensemble of wtBsLipA 

MD simulations of wtBsLipA were carried out with the GPU-accelerated version of PMEMD 76 of 

the AMBER14 suite of programs 77 together with the ff14SB force field 78. As a starting structure, 

the X-ray crystal structure of wtBsLipA (PDB ID: 1ISP) was used 51. Hydrogens were added and 

side-chain orientations (“flips”) of Asn, Gln, and His were optimized by the REDUCE program 79 

based on suitable hydrogen-bonding geometries and avoiding potential steric clashes. This was 

done to take into account that O versus N or N versus C are difficult to distinguish in X-ray 

crystallography experiments 79. For neutralization of the system, sodium counter-ions were added. 

Subsequently, the system was solvated by a truncated octahedral box of TIP3P water 80 such that a 

layer of water molecules of at least 11 Å widths covers the protein surface. The particle mesh Ewald 

method 81 was used with a direct-space non-bonded cutoff of 8 Å. Bond lengths involving hydrogen 

atoms were constrained using the SHAKE algorithm 82, and the time step for the simulation was 2 

fs. As done before 8, a trajectory of 100 ns length was generated after thermalization and adjustment 

of the pressure, simulating in the canonical (NVT) ensemble at T = 300 K, with conformations 

extracted every 40 ps from the last 80 ns, resulting in a structural ensemble of 2000 conformations. 

We assessed the statistical independence of the extracted conformations by calculating the 

autocorrelation function of the cluster configuration entropy Htype2, the measure used to identify 

phase transitions in the constraint networks (see section 2.9 below) (Figure S2). Because 

fluctuations of Htype2 decorrelate already within the first two snapshots, the snapshots used for CNA, 

which were extracted at time intervals of 40 ps, are considered independent. 
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2.8. Thermal unfolding simulation of wtBsLipA 

For analyzing the rigid cluster decomposition of wtBsLipA, a thermal unfolding simulation was 

performed by CNA on an ensemble of network topologies (ENTMD) generated from a molecular 

dynamics (MD) trajectory. The ensemble-based CNA was pursued to increase the robustness of the 

rigidity analyses 83, 84Subsequently, the unfolding trajectory was visually inspected by VisualCNA 

85 for identifying secondary structure elements that segregate from the largest rigid cluster at each 

major phase transition. VisualCNA is an easy-to-use PyMOL plug-in that allows setting up CNA 

runs and analyzing CNA results linking data plots with molecular graphics representations 85. 

VisualCNA is available under an academic license from http://cpclab.uni-duesseldorf.de/software. 

 

2.9. Local and global indices for analyzing structural rigidity of wtBsLipA 

From the thermal unfolding simulation, CNA computes a comprehensive set of indices to quantify 

biologically relevant characteristics of the biomolecule’s stability 86. Global indices are used for 

determining the flexibility and rigidity at a macroscopic level. Local indices determine the 

flexibility and rigidity at a microscopic level of bonds. 

The cluster configuration entropy Htype2 is a global index, which has been introduced by Radestock 

and Gohlke 2. Htype2 is used to identify the phase transition temperature Tp at which a biomolecule 

switches from a rigid to a floppy state and the largest rigid cluster stops to dominate the whole 

protein network. As long as the largest rigid cluster dominates the whole protein network, Htype2 is 

low because of the limited number of possible ways to configure a system with a very large cluster. 

When the largest rigid cluster starts to decay or stops to dominate the network, Htype2 jumps. There, 

the network is in a partially flexible state with many ways to configure a system consisting of many 

small clusters. The percolation behavior of protein networks is usually complex, and multiple phase 

transitions can be observed 2, 4, 5, 7, 8. In order to identify Tp, a double sigmoid fit was applied to an 

Htype2 versus T(Ecut) curve as done previously 2, 4, 5, 7, 8, and Tp taken as that T value associated with 

the largest slope of the fit. 

The stability map rcij is a local index, which has been introduced by Radestock and Gohlke 4. rcij 

represents the local stability within a protein structure for all residue pairs at which a rigid contact 

rc between two residues i and j (represented by their C  atoms) is lost during the thermal unfolding. 
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rc exists if i and j belong to the same rigid cluster c of the set of rigid clusters  86. Thus, rcij 

contains information cumulated over all network states along the unfolding trajectory as to which 

parts of the network are (locally) mechanically stable at a given , and which are not 7. This 

stability information is not only available in a qualitative manner but also quantitatively in that each 

rcij has been associated with Ecut at which the rigid contact is lost. The sum over all entries in rcij 

represents the chemical potential energy due to noncovalent bonding, obtained from the coarse-

grained, residue-wise network representation of the underlying protein structure. To focus only on 

the stability of rc between structurally close residues, rcij was filtered such that only rigid contacts 

between two residues that are at most 5 Å apart from each other were considered (neighbor stability 

map rcij,neighbor).

Finally, CNA predicts unfolding nuclei as structural features from which macroscopic (in)stability 

originates 87. Unfolding nuclei are represented by residues that percolate from the largest rigid 

cluster at the latest phase transition. If such residues become flexible, it will have a detrimental 

effect on protein stability. Fringe residues of the unfolding nuclei percolate from the largest rigid 

cluster during earlier steps of the thermal unfolding. We follow the hypothesis that the more 

structurally stable the fringes of unfolding nuclei are, the more structurally stable will be those 

unfolding nuclei 87. Therefore, if such fringe residues (termed weak spots) are targeted by 

substitutions, the likelihood to stabilize the rigid core of a protein should be high. If two unfolding 

nuclei were only separated by one residue, this residue was also considered a weak spot. This 

procedure of identifying weak spots is in agreement with a previous study of us 87. 

2.10. Statistical evaluation of CNA as a binary classifier 

The performance of CNA was investigated as a binary classifier with the following possible 

outcomes: true positives (TP) are predicted weak spots that are hot spots, whereas false positives 

(FP) are predicted weak spots that are non-hot spots. In turn, true negatives (TN) are predicted non-

weak spots that are non-hot spots, whereas false negatives (FN) are predicted non-weak spots that 

are hot spots. Different metrics were then applied to evaluate CNA. 

The recall (r) answers the question how many hot spots were predicted as weak spots (Eq. 8) 88. 

 Eq. 8
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The precision (p) evaluates how many predicted weak spots are actually hot spots (Eq. 9) 88. 

 Eq. 9

The precision in random classification (prandom) indicates how many of the 181 BsLipA residues are 

actually hot spots (Eq. 10) 88. 

 Eq. 10

The gain in precision over random classification (gip) represents how many predicted weak spots 

are actually hot spots in comparison to random classification (Eq. 11) 88. The gip range is [0, ], 

with values < 1 indicating a lower precision than obtained by random classification. 

 Eq. 11

The F1-score (F1) is a measure of the test’s accuracy. It represents the harmonic mean of p and r, 

i.e., if there is an uneven class distribution, it is used to seek a balance between p and r (Eq. 12) 89. 

The F1 range is [0, 1], with one indicating perfect r and p. 

 Eq. 12

 

2.11. Markov Chain Monte Carlo-based unfolding simulations of wtBsLipA 

As an independent method to assess the order of unfolding of wtBsLipA, we used a Markov Chain 

Monte Carlo (MCMC) simulation with an all-atom model restricted to dihedral degrees of freedom 

90. This method has been successfully used for protein folding simulations 91 and has been shown to 

reproduce the order of melting temperatures for a set of protein variants 92. In this MCMC model, 

implemented in the open source tool ProFASi (Protein Folding and Aggregation Simulator), the 

protein conformation is modified by changing one or few dihedral angles in each step. A step is 

accepted according to the Metropolis criterion, i.e., with a probability that depends on the absolute 

temperature and the resulting change of energy of the system. In ProFASi, the energy is calculated 

by an all-atom implicit solvent force field 92, 93. While MCMC simulations allow arbitrarily large 
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changes to the molecule, the unfolding simulations for this study have been restricted to side chain 

dihedral updates and small, locally correlated updates of main chain dihedral angles 94. To ensure 

adequate sampling, 96 MCMC simulations at 330 K were performed with a total of 3.05 * 1010 

elementary updates. 
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3. Results 

3.1. About one-tenth of all variants in the complete SSM library show significantly 

increased T50 or D towards at least one detergent, and such variants were found at two-thirds 

of all substitution sites 

The BsLipA SSM library contained T50 as well as D data towards the four detergents SDS, CTAB, 

SB3-16, and Tween  80 for all 3439 single variants (181 substitution sites of BsLipA x 19 naturally 

occurring AAs), including also inactive variants (see section 2.1). Initially, the results of both 

experimental screening studies of the SSM library with respect to changes in T50 ( T50) or D 

towards one detergent ( D) were assessed in terms of the variance of the data and its significance 

(see section 2.2). 

As to the T50 data, only variants with T50 higher (lower) than the experimental uncertainty, taken 

as the standard deviation T for the respective variant determined from three screenings of T50, were 

considered significantly increased (decreased) in T50 compared to wtBsLipA ( T50 = 0 K) (Eq. 1). 

The average T is 0.44 K. In total, 1856 variants with significantly increased T50 were obtained, of 

which 214 (~12%) show an increase and 1642 (~88%) a decrease (Figure 1A, Table S1). This 

proportion represents what one would obtain in the case of random mutagenesis. The distribution of 

T50 is left-skewed, with extreme T50 values of -8.3 K and +7.7 K, and the most frequent T50 

range being -2 K to -1.5 K (~12% out of 1856 variants), followed by T50 between -1.5 K and -1 K 

(~10% out of 1856 variants) (Figure 1A). In turn, for each of 69 substitution sites (~38% out of 181 

substitution sites) at least one variant with significantly increased T50 was found. These substitution 

sites are summarized in class I (I = {Substitution sitex | 1  x  181, T50(x) is significantly 

increased}) (Tables 1 and S2). 

Likewise, only variants with D higher (lower) than two times the experimental standard deviation 

(2 D) of wtBsLipA determined from screenings of 2997 wtBsLipA replicates 19 towards the 

respective detergent were considered significantly increased (decreased) in D compared to 

wtBsLipA ( D = 0) (Eq. 2). The screening revealed the highest D in the presence of SB3-16, 

followed by Tween 80, CTAB, and SDS (Table S1) 19. This may be related to the fact that SB3-16 

and Tween 80 were tested above the critical micelle concentration (CMC), while CTAB and SDS 

were tested below it 19, 95. The respective detergent concentration had been chosen based on the 

inactivation of purified wtBsLipA (Table S1) 19. On average, 900 variants with significantly 
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increased D were obtained, of which 126 (~14%) show an increase and 774 (~86%) a decrease, on 

average across each detergents (Figures 1B – E, Table S1). This proportion represents what one 

would obtain in the case of random mutagenesis. The distribution of D is left-skewed. The 

magnitude of the increase (decrease) in D is between 1.6-fold and 2.4-fold (0.6-fold and 2.9-fold) 

of the residual activity of wtBsLipA. Furthermore, variants tested against SDS and SB3-16 showed 

an up to two times higher D than against CTAB and Tween 80 (Figures 1B – E). This may be 

related to the different classes of the detergents 19, 95. In turn, for each of 74, 42, 46, or 34 

substitution sites at least one variant with significantly increased D towards SDS, CTAB, SB3-16, 

or Tween 80 (~41, 23, 25 or 19% out of 181 substitution sites) was found. These substitution sites 

are summarized in classes II – V (II – V = {Substitution sitex | 1  x  181, DSDS / CTAB / SB3-16 / 

Tween 80(x) is significantly increased}) (Tables 1 and S2). The union of II – V contains 109 

substitution sites (~60% out of 181 substitution sites) and is represented by class VI (VI = II  III 

 IV  V) (Tables 1 and S2, Eq. 3). For each of these substitution sites at least one variant shows 

significantly increased D towards at least one detergent. 

Finally, 124 substitution sites are summarized in the union of I and VI (~69% out of 181 

substitution sites) (VII = I  VI) (Tables 1 and S2, Eq. 3). Thus, only for two-thirds of all 

substitution sites at least one variant with significantly increased T50 or D towards at least one 

detergent were obtained. 

To conclude, for the first time, we performed a systematic large-scale analysis of a complete 

experimental SSM library towards two types of stabilities of one protein containing all single 

variants. The likelihoods to generate variants with significantly increased T50 (~12%) or D towards 

one detergent (~14% on average across all detergents) by random mutagenesis (I – V) are similar. 

Variants with significantly increased T50 or D towards at least one detergent were obtained at only 

two-thirds of all substitution sites (VII), and this value falls to about one third or below if T50 and D 

towards one detergent are considered separately (I - V). Hence, such substitution sites are not 

uniformly distributed across the protein. For the following analyses, only substitution sites with at 

least one variant yielding significantly increased T50 or D towards at least one detergent were 

considered. 
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3.2. The higher the frequency of substitution occurrences is that lead to significantly 

increased T50 or D towards one detergent, the more pronounced is the highest effect, and vice 

versa 

Next, we investigated the BsLipA SSM library regarding the respective frequency of substitution 

occurrences at substitution sites that lead to significantly increased T50 (NBsLipA; T) or D (NBsLipA; D) 

towards one detergent. Additionally, we analyzed the respective highest effects in significantly 

increased T50 ( T50; max) or D ( Dmax) towards one detergent at substitution sites. Finally, we 

address the question if the frequency of substitution occurrences and the highest effects per 

substitution site are related to each other. 

The highest NBsLipA; T of I was 12 (F17) (Figure 2A), whereas the highest NBsLipA; D of II – V were 

14 (E65), 6 (I135 and D144), 11 (G46), and 5 (V99) (Figure 2B, Table S14), respectively, 

indicating that up to ~60% and more of the variants for some substitution sites yield significantly 

increased T50 or D towards one detergent. Correlations between NBsLipA; T of I and NBsLipA; D of II – 

V yielded, on average, R2 = 0.03; p > 0.1 (Figure 2C, Table S3). The highest correlation was found 

between NBsLipA; T of I and NBsLipA; D of II (R2 = 0.07, p < 0.001). With respect to NBsLipA; D of II – V, 

overall very weak to weak but mostly significant correlations were obtained (on average: R2 = 0.11, 

p < 0.01) (Figure 2C, Table S3). The highest correlation was observed between NBsLipA; D of III 

and IV (R2 = 0.26, p < 0.001). 

The highest T50; max of I was 7.7 K (M137), whereas the highest Dmax of II – V were 1.49 

(M137), 1.63 (T110), 2.41 (G46), and 2.29 (S127), respectively (Table S9), indicating that specific 

single AA substitutions have a great impact on the magnitudes of the effects. Correlations between 

T50; max of I and Dmax of II – V showed, on average, R2 = 0.06; p > 0.1 (Figure 2D, Table S4). 

The highest correlation was observed between T50; max of I and Dmax of IV (R2 = 0.13, p < 0.1). 

With respect to Dmax of II – V, overall very weak to weak and mostly insignificant correlations 

were obtained (on average: R2 = 0.08, p > 0.1) (Figure 2D, Table S4). The highest correlations 

were observed between Dmax of II and V (R2 = 0.24, p < 0.05) as well as Dmax of III and IV 

(R2 = 0.13, p < 0.1). 

Finally, mostly good to fair and significant correlations between NBsLipA; T and T50; max of I as well 

as NBsLipA; D and Dmax of II – V were found (on average for increase: R2 = 0.27, p < 0.01) (Figure 

2E, Table S5).  
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To conclude, these findings indicate that the relation “the higher the frequency of substitution 

occurrences are that lead to significantly increased T50 or D towards one detergent, the more 

pronounced is the highest effect, and vice versa” holds for substitution sites at which at least one 

variant shows significantly increased T50 or D towards one detergent (I – V). Together with the 

results from the previous chapter, this result suggests that identifying a priori substitution sites with 

a high likelihood for significantly increased T50 or D towards one detergent will also be beneficial 

with respect to the magnitude of effects that can be achieved there by substitutions. 

 

3.3. Eleven substitution sites yield a ~4.6-fold higher likelihood to find for each detergent 

variants with significantly increased D than random mutagenesis 

Next, we focused on pairwise intersections of II – V to investigate if there are substitution sites at 

which for two detergents at least one variant shows significantly increased D, regardless of the 

magnitude of the single effect (see section 2.3). We compared the pairwise similarities between II – 

V by calculating the Jaccard index (J), i.e., the cardinal number of the respective intersection 

divided by the cardinal number of the respective union (Table S6, Eq. 5) 56, 57. The highest 

similarity was found between III and IV with J(III, IV) = 0.47, whereas the lowest similarity was 

observed between II and V with J(II, V) = 0.23. This may be related to the different classes of the 

detergents 19, 95 

Encouraged by the findings of overlapping II – V, we also looked at the overall intersection of II – 

V (VIII = II  III  IV  V), i.e., substitution sites at which for each detergent at least one variant 

shows significantly increased D, regardless of the magnitude of the single effect (Tables 1 and S2, 

Eq. 4). VIII contains the eleven substitution sites E2, G13, D43, T45, Y49, N51, V54, E65, N98, 

M134, and M137 (~6% out of 181 substitution sites) (Tables 1, S2, and S14). These substitution 

sites are associated with 50 variants causing a significant change in D, of which 32 (~64%) show a 

significant increase, on average across all detergents (Table S7). Thus, this likelihood is ~4.6-fold 

higher in comparison to random mutagenesis. The most promising substitution sites of VIII are 

M134, N51, and T45 with variants showing increased Dmax of 2.25, 2.10, and 1.90, respectively. 

To conclude, a dramatically reduced number of eleven substitution sites (VIII) yield a ~4.6-fold 

higher likelihood to find for each detergent variants with significantly increased D compared to 
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random mutagenesis. These findings indicate that if a protein engineering study aims at identifying 

variants showing significantly increased D towards each detergent, such substitution sites (VIII) 

should be identified prior to SDM. 

 

3.4. Seven substitution sites yield a ~3.4-fold higher likelihood to find variants with 

significantly increased T50 and a ~4.7-fold higher likelihood to find for each detergent variants 

with significantly increased D than random mutagenesis 

The same analyses were repeated for intersections of I and II – V, respectively, regarding 

substitution sites at which at least one variant shows significantly increased T50 and for one 

detergent significantly increased D, regardless of the magnitude of the single effect (see section 

2.3). We compared the pairwise similarities between I and II – V, respectively, by calculating J 

(Table S6, Eq. 5). The highest similarity was found between I and II with J(I, II) = 0.42, whereas 

the lowest similarity was observed between I and V with J(I, V) = 0.16. 

Encouraged by the findings of overlapping I and II – V, respectively, we also looked at the overall 

intersection of I and II – V (IX = I  VIII), i.e., substitution sites at which at least one variant 

shows significantly increased T50 and for each detergent significantly increased D, regardless of the 

magnitude of the single effect (Tables 1 and S2, Eq. 4). IX contains the seven substitution sites E2, 

G13, T45, Y49, V54, M134, and M137 (~4% out of 181 substitution sites) (Tables 1, S2, and S14). 

Associated with these are 86 variants causing a significant change in T50, of which 35 (~41%) show 

a significant increase (Table S8). Thus, this likelihood is ~3.4-fold higher in comparison to random 

mutagenesis. The most promising substitution sites of IX are M137, M134, and Y49 with variants 

showing increased T50; max of 7.7, 5.6, and 1.6 K, respectively. Furthermore, associated with 

substitution sites of IX are 29 variants causing a significant change in D, of which 19 (~66%) show 

a significant increase, on average across all detergents (Table S8). Thus, this likelihood is ~4.7-fold 

higher in comparison to random mutagenesis. The most promising substitution sites of IX are 

M134, T45, and M137 with variants showing increased Dmax of 2.25, 1.90, and 1.67, respectively. 

To conclude, a dramatically reduced number of seven substitution sites (IX) yield a ~3.4-fold 

higher likelihood to find variants with significantly increased T50 and a ~4.7-fold higher likelihood 

to find for each detergent variants with significantly increased D compared to random mutagenesis. 
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These findings indicate that if a protein engineering study aims at identifying variants showing 

significantly increased T50 and D towards each detergent, such substitution sites (IX) should be 

identified prior to SDM. 

 

3.5. Six substitution sites with highest T50; max ( Dmax) yield a ~5.3-fold (~4.5-fold) higher 

likelihood to find variants with significantly increased T50 (D) than random mutagenesis 

The above analyses focused on substitution sites at which significantly increased T50 or D towards 

one detergent (I – V), significantly increased D towards each detergent (VIII), as well as 

significantly increased T50 and D towards each detergent (IX) were observed, regardless of the 

magnitude of the effect. Now, we identified those six substitution sites for which the respective 

highest effects ( T50; max or Dmax) were found. The number of six is motivated by the current 

technical limitation to screen more than 206 variants 20, 39, 49, 50. 

The six substitution sites M137, M134, G155, F17, I157, and Y139 yield variants with the highest 

T50; max of 7.7, 5.6, 4.5, 3.8, 3.6, and 3.2 K, respectively, and constitute class X (X = {Substitution 

sites x | 1  x  181, six highest effects in significantly increased T50(x)}) (Tables 1, S2, and S9). 

The substitution sites of X are associated with 68 variants causing a significant change in T50, of 

which 43 (~63%) yield a significantly increased T50 (Table S10). Thus, this likelihood is ~5.3-fold 

higher in comparison to random mutagenesis. 

The most promising substitution sites exhibiting variants with the highest Dmax towards one 

detergent (XI – XIV = {Substitution sites x | 1  x  181, six highest effects in significantly 

increased DSDS / CTAB / SB3-16 / Tween 80(x)}) are M137 (XI), T110 (XII), G46 (XIII), and S127 (XIV) 

with variants showing highest Dmax of 1.49, 1.63, 2.41, and 2.29, respectively (Tables 1, S2, and 

S9). With these substitution sites, 43 variants are associated causing a significant change in D, of 

which 27 (~63%) cause significantly increased D, on average across all detergents (Table S10). 

Thus, this likelihood is ~4.5-fold higher in comparison to random mutagenesis. 

Furthermore, we determined the union of XI – XIV, the set of 20 substitution sites (~11% out of 

181 substitution sites) that yield variants showing the respective highest Dmax towards at least one 

detergent (XV = XI  XII  XIII  XIV) (Tables 1 and S2, Eq. 3). Additionally, the union of X 

and XV was defined as the set of 24 substitution sites (~13% out of 181 substitution sites), which 
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exhibit variants showing the respective highest T50; max or Dmax towards at least one detergent 

(XVI = X  XV) (Tables 1 and S2, Eq. 3). 

The intersection between XI – XIV (XVII = XI  XII  XIII  XIV) is empty, i.e., there are no 

common substitution sites among those six at which for each detergent variants with highest Dmax 

were found (Tables 1 and S2, Eq. 4). The intersection between X and XVII (XVIII = X  XVII) 

is necessarily empty, too, i.e., there are no common substitution sites among those six at which 

variants with highest T50; max and Dmax for each detergent were found (Tables 1 and S2, Eq. 4). 

Thus, XVII and XVIII were not considered for the following analyses. 

Additionally, we compared the pairwise similarities between X – XIV by calculating J (Eq. 5). 

Regarding the highest Dmax, only XII and XIII overlap to some extent (J(XII, XIII) = 0.2) Table 

S6). Regarding the highest T50; max and Dmax, only X and XI, XII, or XIII, respectively, slightly 

overlap (J(X, XI)  J(X, XII)  J(X, XIII) = 0.1) (Table S6). 

To conclude, a highest T50; max of 7.7 K and a highest Dmax of 2.41 were found. The six 

substitution sites with highest T50; max yield a ~5.3-fold higher likelihood to find variants with 

significantly increased T50 (X); the six substitution sites with highest D max yield a ~4.5-fold higher 

likelihood to find variants with significantly increased D (XI – XIV). There are no common 

substitution sites among those six at which for each detergent variants with highest Dmax were 

found (XVII). Neither are there common substitution sites among those six at which variants with 

highest T50; max and Dmax for each detergent were found (XVIII). 

 

3.6. Definition of hot spots 

Based on these results, we defined seven types of hot spots, i.e. substitution sites particularly 

promising to cause a significant increase in T50 or / and D. First, the respective six substitution sites 

of X – XIV are considered hot spots because variants yield the respective highest T50; max or Dmax 

towards one detergent for these substitution sites (Tables 1, S2, and S9). Furthermore, we showed 

that there is a correlation between the magnitude of an effect found at a substitution site and the 

frequency of substitution occurrences that lead to significantly increased T50 or D towards one 

detergent (see section 3.2). Finally, generating and evaluating variants based on combinations of all 
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20 AAs at six substitution sites is still manageable with current protein engineering techniques 20, 39, 

49, 50. 

As shown above, XVII and XVIII, which would constitute the substitution sites with the broadest 

impact on Dmax, or T50; max and Dmax, are empty (see section 3.5). Hence, we resorted to 

defining, second, the eleven substitution sites of VIII showing significantly increased D towards 

each detergent, regardless of the magnitude of the single effect (see section 3.3) and, third, the 

seven substitution sites of IX showing significantly increased T50 and D towards each detergent, 

regardless of the magnitude of the single effect (see section 3.4) as hot spots (Tables 1 and S2). 

With eleven and seven substitution sites, these classes are also the smallest besides X – XIV. 

 

3.7. Hot spots are diverse in terms of localization in secondary structure elements, degree of 

burial, and sequence-based characteristics of the substituted AAs 

Ideally, one would identify such hot spots based on structural or sequence characteristics of the 

protein (see section 2.4 and 2.5) prior to performing experiments. Suitable structure-based 

characteristics are localization in secondary structure elements (Table S11) 19, 96-98 and the degree of 

burial as measured by fSASAs (Table S12, Eq. 6) 19, 99, 100. 

As to localization in secondary structure elements (Table S11), hot spots are rarely found in 310-

helices and -strands. Exceptions are hot spots of class XIV, that are enriched in strand 7. With 

respect to -helices, at least one and at most four hot spot(s) of each class is (are) found in that 

secondary structure class, mainly in helices B and E. However, without further information, one 

would not know which particular secondary structure element to choose for hot spot prediction. 

Hence, if all sites of a certain secondary structure class were chosen as hot spots, in the best case, a 

gain in precision (gip, Eq. 11) over random classification of 4.71 is found for -strands, albeit at 

the expense of predicting 32 substitution sites (~18% of 181 AAs), far more than the six sought. As 

to bridges, turns, loops, and bends defined by DSSP 58, no hot spot is found in the first secondary 

structure type. At most three hot spots are found in any of the other three types, but only for hot 

spots of class XI and VIII. These cases are related to a maximal gip of 1.93, albeit at the expense of 

predicting 47 substitution sites (~26% of 181 AAs). Thus, in our study, identifying hot spots based 

on this secondary structure type results in a low precision. 
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As to the degree of burial (Table S12), the least hot spots are associated with substitution sites that 

are mostly solvent-exposed (0.8 < fSASA  1.0). By contrast, the most hot spots are associated with 

substitution sites that are partially solvent-exposed (0.6 < fSASA  0.8), although this statement 

does not hold for hot spots of class XIV. This case is related to a maximal gip of 6.70, albeit at the 

expense of predicting 18 substitution sites (~10% of 181 AAs). 

Suitable sequence-based characteristics are physicochemical properties of the substituted AAs 

(Table S13) 19, 101-103 and the degree of AA conservation (Table S14) 19, 104, 105. As to the 

physicochemical properties of the substituted AAs (Table S13), the distribution of hot spots over 

the classes is generally broad. Exceptions are hot spots of classes XIII and XIV (in both cases 

preferentially found at aliphatic and neutral AAs (Table S15)) and class X (preferentially found at 

aliphatic, aromatic, and neutral AAs (Table S15)). Therefore, gip values are generally low, with the 

largest one being 4.02 for the case of hot spots of class X at aromatic AAs, albeit at the expense of 

predicting 15 substitution sites (~8% of 181 AAs). As to the degree of AA conservation, hot spots 

are located at non-conserved and semi-conserved positions (conservation in the range of 0 - 6) 

(Table S14). The highest conservations were found for I128 (conservation = 6) and V99, T126, and 

I128 (conservation = 5). 

To conclude, while predicting hot spots based on structural characteristics can lead to marked gip 

values, usually many predicted hot spots result, which would require considerable experimental 

efforts. Still, if a higher number of predicted hot spots is acceptable, partially solvent-exposed 

residues are good hot spot candidates. Applying sequence-based characteristics, substituting 

aliphatic and neutral residues should more likely improve T50 or / and D. Additionally, non-

conserved and semi-conserved regions preferentially contain hot spots. 

 

3.8. Rigidity theory-based (CNA) and Markov chain Monte Carlo simulation-based 

(ProFASi) approaches predict similar thermal unfolding pathways of wtBsLipA 

We intend to test if hot spots can be predicted as structural weak spots by our rigidity theory-based 

approach CNA 66, 106, 107 (see section 2.6). As a prerequisite, information on the hierarchy of rigid 

and flexible regions in a protein structure is required. Therefore, a thermal unfolding simulation of 
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wtBsLipA was carried out with CNA as done previously 7, 8 to predict major phase transitions at 

which the network switches from overall rigid to flexible states (see sections 2.7, 2.8, and 2.9). 

From the thermal unfolding pathway of wtBsLipA, five major phase transitions, T1 – T5, were 

predicted based on the global index Htype2 (Figure 3A). Depending on the energy cut-off Ecut, the 

phase transitions were characterized as either early (T1 – T2; with -0.8 kcal mol-1  Ecut  -0.9 kcal 

mol-1) or late (T3 – T5; with -1.7 kcal mol-1  Ecut  -1.9 kcal mol-1). Ecut can be converted to a 

temperature T using a linear equation (Eq. 7) 87, according to which the ranges of Ecut in this study 

are equivalent to 316 K  T  318 K for T1 - T2, and 334 K  T  338 K for T3 – T5. During the 

early phase transitions A, 310-1, F, and 310-5 segregate from the largest rigid cluster. D, E, B, 

C, and -strands segregate from the largest rigid cluster during the late phase transitions. 

Afterwards, the -sheet becomes sequentially flexible, beginning with 4 and 8, followed by 3, 

7, 5, and 6. For the analysis, ~3 h of computational time on a single GPU is required to generate 

a 100 ns long MD trajectory as well as ~4 h of computational time on a single core for the thermal 

unfolding simulation. 

Since the percolation behavior of a protein network is complex due to the protein’s structural 

hierarchy and composition of different modules, it is often challenging to assign a phase transition 

with Htype2 86. Thus, in addition to using Htype2, we also characterized the hierarchy of rigid and 

flexible regions of wtBsLipA at a local level by computing rcij,neighbor (lower triangle in Figure 3B) 

based on rcij (upper triangle in Figure 3B). rcij,neighbor showed that residue pairs at the N-terminus 

revealed higher Ecut values than residue pairs at the C-terminus. Thus, rcij,neighbor demonstrates that 

the rigid contacts between neighboring residues are stronger at the N-terminus than at the C-

terminus along the thermal unfolding simulation, i.e., the C-terminus of wtBsLipA starts to unfold 

first. 

As an independent approach to assess the order of unfolding of wtBsLipA, we used the Markov 

Chain Monte Carlo (MCMC) simulation software ProFASi (Protein Folding and Aggregation 

Simulator) (see section 2.11) 90. The results of the simulation were represented in a contact map 

(upper triangle in Figure 3C). They reveal that the contacts between the residue pairs of the N-

terminus have a longer lifetime (in terms of MC sweeps) than the contacts of the residue pairs of the 

C-terminus compared to the initial structure. Thus, although methodologically different, ProFASi 

predicts a very similar unfolding pathway of wtBsLipA with respect to CNA. 
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To conclude, five major phase transitions, T1 – T5, were predicted by thermal unfolding 

simulations using CNA at which first the different helices and, finally, the -strands segregate from 

the largest rigid cluster during thermal unfolding simulations of wtBsLipA by CNA. Structural 

rigidity is initially lost at the C-terminus, which is uniformly revealed by the global index Htype2 and 

the local index rcij,neighbor. Finally, the two independent approaches CNA and ProFASi predict very 

similar unfolding pathways of wtBsLipA. The results suggest that the loss of rigidity predicted by 

CNA along the thermal unfolding simulation closely mimics the temperature-induced unfolding of 

wtBsLipA. 

 

3.9. Unfolding nuclei and major phase transitions are predictive markers of structural 

weak spots 

We next probed to what extent structural weak spots predicted by CNA agree with the above 

defined hot spots. Following previous work 87, weak spots are fringe residues of unfolding nuclei 

that percolate from the largest rigid cluster during earlier steps of the thermal unfolding (see section 

2.9). In total, we predicted ten weak spots (~6% out of 181 substitution sites), i.e., I12, G13, G46, 

G52, P53, T66, M134, I135, V136, and H152 (Figure 4A, Tables 1, 2, and S2). Three weak spots 

each segregate from the largest rigid cluster at T1 or T2, and four from the largest rigid cluster at T4 

(Table 2). 

The performance of predicting hot spots as weak spots by CNA was evaluated in terms of a binary 

classification, considering predicted weak spots at hot spots true positives (TP) and predicted weak 

spots at not-hot spots false positives (FP) (see section 2.10). In particular, the gain in precision over 

random classification (gip) (Eq. 11) and the F1-score (F1) (Eq. 12), a measure of a classifier’s 

accuracy, were used as performance measures. Over all seven classes of hot spots, between one and 

three of the predicted weak spots are hot spots (except for XIV, where no weak spot was met), 

resulting in gip values between 3.02 and 9.05 (Tables 1 and S2). Note that these results are 

associated with only ten predicted weak spots, about half as many predictions than in the case of 

identifying hot spots as partially solvent-exposed residues (Table S12). As the numbers of hot spots 

in VIII to XIV are of a very similar magnitude, the CNA predictions are also associated with 

similar recall (r) (Eq. 8) and precision (p) values (Eq. 9) in each case (Table S2), indicating a well-

balanced classifier. In the case of XII, the CNA predictions yield an F1-score of 0.38, higher than 
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any F1-score associated with hot spot predictions based on structure or sequence characteristics 

(Tables S2, S11, S12, S13, and S14), and the F1-score for IX is 0.24, generally higher than F1-

scores associated with structure- or sequence-based predictions for this class and on par with the 

result obtained for identifying these hot spots as partially solvent-exposed residues (Tables S2, S11, 

S12, S13, and S14). 

To conclude, predicting hot spots as weak spots by CNA results in several cases in very good to 

good gip values and good to fair accuracies, and is associated with a very low number of predicted 

weak spots, such that also only little experimental efforts are required later. Considering the low 

computing time required to perform a CNA analysis, these results indicate that applying CNA-

based weak spot prediction before experimental engineering is beneficial, in particular if the number 

of substitution sites that can be dealt with in experiment is low. 
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4. Discussion 

In this study, for the first time, we performed a systematic large-scale analysis of a complete 

experimental SSM library of a biotechnologically highly relevant protein, BsLipA 52, 53, with respect 

to two types of protein stability. The library covers all 181 residues of BsLipA and results in 3439 

variants, each with a single AA substitution as confirmed by DNA sequencing. Considering the 

screening results of the library towards thermostability and detergent tolerance together is unique 

compared to related studies 2, 4-8, 17-19 and important in view of the challenges of multi-dimensional 

property optimization of modern biocatalysts 108-110. The measured T50 and D values provide 

valuable reference data for future analyses because, in contrast to other data sources 34-37, the 

different protein stabilities were measured under respectively uniform conditions, and there is no 

bias towards any particular substitution type or site. Note, though, that other factors than protein 

stability may influence T50 or D values measured here 52, including that substitutions can directly 

impact BsLipA function, e.g., when occurring in the vicinity of the active site 8. Moreover, the 

measured T50 and D values may be influenced by thermodynamic or kinetic factors 7, 8. Therefore, 

in our analysis, we focused on scrutinizing the impact of substitution sites on thermostability or / 

and detergent tolerance to gain generally applicable rules for data-driven protein engineering. The 

following results stand out: 

First, across the library, the likelihoods to find variants with significantly increased T50 (~12%) or D 

towards one detergent (~14%) are almost identical and small. The finding that the overwhelming 

number of single AA substitutions introduced by random mutagenesis causes a destabilizing effect 

is in agreement with previous studies 33, 111-114. This finding becomes even more statistically 

relevant if multiple mutations need to be accumulated over generations to reach a desired effect 

because frequently, a single, yet rather likely, destabilizing mutation is sufficient to annihilate the 

effect of several stabilizing ones 20. The proportions of variants with increased T50 or D found here 

are in line with the composition of databases such as ProTherm 30 but markedly larger than the 

success rate of ~2% used as a reference to evaluate the performance of FoldX 115. Hence, beyond 

the single T50 and D data, due to the completeness of our library and the model character of our 

protein, our results also constitute unbiased reference data as to what efficiency can be expected for 

a protein  system when optimizing thermostability or detergent tolerance by random mutagenesis. 

In turn, largest increases in T50 of 7.7 K and D of 2.4 found demonstrate that considerable 

improvements of protein stability can already be achieved by single AA substitutions. In that 
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respect, previous studies on BsLipA either applying directed evolution 116 or rational design 7, 8 

already yielded close-to-optimal results in terms of increased thermostability. 

Second, in the context of data-driven protein engineering, we identified substitution sites for which 

variants yield significantly increased T50 or / and D. Not considering the magnitude of the increase, 

only about one third or below of all BsLipA residues constitute such favorable substitution sites if 

T50 and D are considered separately, demonstrating that the location of a residue within a protein 

structure matters with respect to a substitution effect. This result corroborates previous studies 5, 7, 8. 

In addition, our complete SSM library allowed us to reveal for such substitution sites a significant 

and fair correlation between the frequency of T50 or / and D-increasing substitutions and the 

magnitude of the maximum effect. Together, these results show that addressing all substitution sites 

in an unbiased manner by random mutagenesis results in a considerable experimental effort coupled 

to low efficiency. In turn, approaches that can identify substitution sites with a high likelihood for 

significantly increased T50 or D prior to doing experiments will be of great value in protein 

engineering studies. 

Third, notably, the conclusions from the last paragraph also hold if more than one protein property 

is considered at a time. As such, we showed that at eleven substitution sites a ~4.6-fold higher 

likelihood to find for each detergent variants with significantly increased D compared to random 

mutagenesis is found. Additionally, seven substitution sites yield a ~3.4-fold higher likelihood to 

find significantly increased T50 and a ~4.7-fold higher likelihood to find for each detergent variants 

with significantly increased D compared to random mutagenesis. The latter finding suggests that 

approaches that can identify substitution sites with a high likelihood for significantly increased T50 

should also be beneficial for identifying substitution sites with a high likelihood for significantly 

increased D, or vice versa. This is an important finding for practical applications as many more 

algorithms have been devised that address thermostability than detergent tolerance. 

Fourth, as another set of reference data, we defined hot spot types together with the associated 

substitution sites to provide benchmark data for evaluating the performance of data-driven 

approaches. The first five classes follow the strict criterion that only the six substitution sites with 

the respective highest T50; max or Dmax are considered, according to that all combinations of the 20 

proteinogenic AAs at such sites could still be experimentally investigated 20, 39, 49, 50. The 

intersections comprising the substitution sites with the broadest impact on Dmax, or T50; max and 
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Dmax, are empty. Thus, we resorted to defining two further classes with the somewhat relaxed 

criterion that the comprised substitution sites show significantly increased D towards each 

detergent, or significantly increased T50 and D towards each detergent, regardless of the magnitude 

of the single effect.  

Fifth, we used the complete, unbiased, and uniformly generated T50 and D data to probe if universal 

rules for modulating thermostability or detergent tolerance can be identified. We thereby focused on 

“one-dimensional” descriptors in terms of location in secondary structure elements, degree of 

burial, and physicochemical properties and conservation degree of substituted AA. Such descriptors 

have been widely analyzed before 117, 118 and play a role in data-driven consensus approaches 119, 120. 

Analysing “two- or higher dimensional” descriptors in terms of residue-residue interactions, 

entropic contributions or other collective phenomena, or cross-correlations of “one-dimensional” 

descriptors 33 remains for future work. Notably, considering our descriptors, many (up to 98 

substitution sites) predicted hot spots result, which would require considerable experimental efforts 

particularly if beneficial substitutions need to be accumulated to reach a desired effect. This finding 

demonstrates on a single protein level that, with these descriptors, no universal and sufficiently 

discriminating rule(s) can be identified, a finding that is mirrored in studies across protein families 

121, 122 and with respect to low successes in assessing thermostabilities 117. Still, if a higher number 

of predicted hot spots is acceptable, partially solvent-exposed residues are good hot spot candidates. 

This result differs from previous experimental studies showing that especially surface remodeling 

emerged as an effective strategy to improve protein stability 123, 124. Furthermore, loop positions, 

which have elsewhere been identified to preferentially carry favorable substitution sites 125, 126, 

show mostly destabilizing effects. Finally, and likely surprisingly, hot spots were preferentially 

found at non-conserved and semi-conserved position, a finding that may help refine future 

consensus concepts where multiple sequence alignments are used to substitute non-consensus 

residues by consensus ones 42, 127. 

Sixth, we made use of the reference data to unequivocally benchmark our ensemble- and rigidity 

theory-based CNA approach with respect to predicting hot spots as structural weak spots of the 

protein. In contrast to previous studies on much smaller data sets 2, 4, 5, 8 the present work allows to 

systematically assess the quality of our predictions. To do so, and in contrast to other assessments of 

protein stability predictors 29, 30, we apply recall and precision as basic statistical measures, rather 

than sensitivity and specificity, because we are interested in the accuracy of predicting hot spots, 
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and not not-hot spots, the latter of which furthermore clearly dominate the dataset in terms of 

occurrence frequency. Methodologically, CNA differs from other state-of-the art methods that do 

not consider ensemble representations of the protein 128-133. Furthermore, CNA does not require 

system-specific weighting or fitting parameters 128, 131, 134, 135. This should make the results obtained 

here with CNA transferable to other protein systems. Weak spot prediction by CNA relies on a 

realistic modeling of the thermal unfolding of a protein 66, 106, 107. The predicted major phase 

transitions and the order of the segregating secondary structure elements are in agreement with 

previous computational studies and experimental observations on other proteins with an /  

hydrolase fold 136, 137. Furthermore, we confirmed the unfolding pathway of wtBsLipA predicted by 

CNA with the independent MCMC-based ProFASi approach. From a practical point of view, it is 

relevant that CNA predicted only ten weak spots, allowing to focus subsequent substitution efforts 

on only ~6% of the protein residues. Furthermore, the gain in precision over random classification 

is between ~3 and ~9, depending on the hot spot class. Considering the properties of the majority of 

predicted weak spots, i.e., a location in a loop, turn, or bend and a neutral or aliphatic amino acid 

type (Table 2), the notion may arise that these two properties, when correlated, characterize 

hotspots. The gain in precision over random classification is only between ~0.7 and ~2.1, however, 

depending on the hot spot class (Table S16), and, hence, more than 4-fold lower than when hot 

spots are predicted as weak spots by CNA (Table 1). Together with the low computational demand 

on the order of hours only, these results lead to the strong recommendation to apply CNA-based 

weak spot prediction for data-driven protein engineering towards increased T50 or / and D. 

In summary, we provide systematic and unbiased reference data at large scale for thermostability 

measured as T50 values and detergent tolerance measured as D for a biotechnologically important 

protein, identified consistently defined hot spot types for evaluating the performance of data-driven 

protein engineering approaches, and showed that CNA-based hot spot prediction can yield a gain in 

precision over random classification up to 9-fold. 
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9. Figures 

 

Figure 1: Distribution of BsLipA variants’ changes in T50 or D towards one detergent. 

Distribution of BsLipA variants’ changes in (A) T50 ( T50) or D ( D) with respect to (B) SDS, (C) 

CTAB, (D) SB3-16, and (E) Tween 80 at the indicated concentrations compared to wtBsLipA ( T50 

/ D = 0). (A) Variants with T50 lower than the experimental uncertainty (standard deviation T for 

the respective variant) were excluded from further analyses (grey). (B-E) Variants within 2 D of 

D of wtBsLipA determined from screenings of 2997 wtBsLipA replicates towards the respective 

detergent were excluded from further analyses (grey). The insets show the numbers of variants 

which cause a significant in- or decrease in T50 or D towards one detergent. A red (blue) color 

indicates a significantly increased (decreased) T50 or D towards one detergent.  
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Figure 2: Localization of BsLipA variants as to the frequency of substitution occurrences and 

highest effects regarding significantly increased T50 or D towards one detergent. (A) The 

maximum number of substitutions that cause significantly increased (A) T50 (NBsLipA; T) of I (I = 

{Substitution sitex | 1  x  181, T50(x) is significantly increased}) or (B) D (NBsLipA; D) of II – V (II 

– V = {Substitution sitex | 1  x  181, DSDS / CTAB / SB3-16 / Tween 80(x) is significantly increased}), are 

mapped onto wtBsLipA (PDB ID: 1ISP). C  atoms of the catalytic triad S77 / D133 / H156 are 

shown as green spheres. A red (grey) color indicates a high (low) NBsLipA; T of I or NBsLipA; D of II – 

V. (C) R2- and p-values for correlations between NBsLipA; T of I or NBsLipA; D of II – V. (D) 

Additionally, an analysis of the respective highest effects in significantly increased T50 ( T50; max) of 

I or D ( Dmax) of II – V were performed. Here, R2- and p-values for correlations between T50; max 

of I or Dmax of II – V are shown. (E) R2- and p-values for correlations between NBsLipA; T and T50; 

max of I or NBsLipA; D and Dmax of II – V. 
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Figure 3: Prediction of the thermal unfolding pathway of wtBsLipA. (A) Thermal unfolding 

pathway of wtBsLipA (PDB ID: 1ISP) showing the early (T1 – T2) and late (T3 – T5) phase 

transitions. Rigid clusters are represented as uniformly colored blue, green, magenta, and cyan 

bodies in the descending order of their sizes. (B) For wtBsLipA the stability map rcij including Ecut 

values at which a rigid contact between two residues is lost for all residue pairs during the thermal 

unfolding simulation (upper triangle); the neighbor stability map rcij,neighbor considering only the 

rigid contacts between two residues that are at most 5 Å apart from each other, with values for all 

other residue pairs colored gray (lower triangle). The Ecut values are calculated with CNA based on 

a structural ensemble (ENTMD). A red (blue) color indicates that contacts between residue pairs are 

more (less) rigid. (C) The aforementioned rcij,neighbor (lower triangle) was compared with a contact 

map simulated by ProFASi (upper triangle). A red (blue) color indicates contacts between residue 

pairs that have a longer (shorter) lifetime (in MC sweeps) than the contacts of the residue pairs of 

the initial protein structure. 310-helices are represented as G-helices.  
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Figure 4: Localization of CNA-predicted weak spots and experimental hot spots of BsLipA. (A) 

Weak spots and (B) hot spots of X, (C) XI, (D) XII, (E) XIII, (F) XIV, (G) VIII, and (H) IV are 

mapped onto wtBsLipA (PDB ID: 1ISP). (A) Ten weak spots, i.e., I12, G13, G46, G52, P53, T66, 

M134, I135, V136, and H152, were predicted by CNA (red spheres). (B-F) The respective six 

substitution sites of X – XIV are considered hot spots as variants yield the respective six highest 

T50; max or Dmax towards one detergent for these substitution sites. (G) The eleven substitution 

sites of VIII showing significantly increased D towards each detergent, regardless of the magnitude 

of the single effect, and (H) the seven substitution sites of IX showing significantly increased T50 

and D towards each detergent, regardless of the magnitude of the single effect, are considered hot 

spots. A green sphere represents a hot spot, and an orange sphere indicates a hot spot that was 

correctly predicted as weak spot.
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10. Tables 

 

Table 1: Identified classes of substitution sites 

Class[a] Definition No. of 

substitution 

sites 

No. of 

weak 

spots[b] 
gip[c] 

I {Substitution sitex | 1  x  181, T50(x) is 

significantly increased} 

69 nd[d] nd[d] 

II {Substitution sitex | 1  x  181, DSDS(x) is 

significantly increased} 

74 nd[d] nd[d] 

III {Substitution sitex | 1  x  181, DCTAB(x) is 

significantly increased} 

42 nd[d] nd[d] 

IV {Substitution sitex | 1  x  181, DSB3-16(x) is 

significantly increased} 

46 nd[d] nd[d] 

V {Substitution sitex | 1  x  181, DTween 80(x) is 

significantly increased} 

34 nd[d] nd[d] 

VI II  III  IV  V 109 nd[d] nd[d] 

VII I  VI 124 nd[d] nd[d] 

VIII II  III  IV  V 11 2 3.30 

IX I  VIII 7 2 5.17 

X {Substitution sitex | 1  x  181, six highest 

effects in significantly increased T50(x)} 

6 1 3.02 

XI {Substitution sitex | 1  x  181, six highest 

effects in significantly increased DSDS(x)} 

6 1 3.02 

XII {Substitution sitex | 1  x  181, six highest 

effects in significantly increased DCTAB(x)} 

6 3 9.05 

XIII {Substitution sitex | 1  x  181, six highest 

effects in significantly increased DSB3-16(x)} 

6 2 6.03 

XIV {Substitution sitex | 1  x  181, six highest 

effects in significantly increased DTween 80(x)} 

6  / 

XV XI  XII  XIII  XIV 20 nd[d] nd[d] 

XVI X  XV 24 nd[d] nd[d] 

XVII XI  XII  XIII  XIV 0 nd[d] nd[d]

XVIII X  XVII 0 nd[d] nd[d]

[a] Class of substitution sites; underlined classes represent hot spots. 

[b] Numbers of hot spots that are predicted as weak spots. 

[c] Gain in precision over random classification (Eq. 11). 

[d] Not determined.  
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Table 2: CNA-predicted weak spots of BsLipA. 

Weak spot Location at secondary structure 

elements 

Phase transition 

I12 Turn T1 

G13 Turn T1 

G46 Loop T4 

G52 B T4 

P53 B T4 

T66 B T4 

M134 Bend T2 

I135 Bend T2 

V136 Bend T2 

H152 Bend T1 


